LESSONS LEARNED

Large-Scale Testing for Effects of AFA on Gas Retention/Release (Project #53030)

Consuelo E. Guzman-Leong

Pilot Plant Lessons Learned Technical Exchange Hanford, Washington **December 5, 2007**

Large-Scale Testing for Effects of AFA on Gas Retention/Release

(Project #53030) Pilot Plant Lessons Learned Technical Exchange December 5, 2007

- ► Project Scope (PNNL)
 - Gas retention tests in 1/4-scale Lag Storage vessel
 - water, clay, AZ-101 chemical simulant with AFA
 - Determine effect of simulant composition on gas retention with AFA
 - Research gas composition effects on gas retention
 - Develop a gas retention/release model based on test results

Large-Scale Testing for Effects of AFA on Gas Retention/Release

(Project #53030)
Pilot Plant Lessons Learned Technical Exchange December 5, 2007

Lessons Learned

Large-Scale Testing for Effects of AFA on Gas Retention/Release

- ▶ Procurements
- ► Simulant-related
- ➤ Testing
- ▶ Data Analysis
- Staff Resources and Communication

- ▶ Procurements
 - Order equipment/instruments as soon as possible
 - Spare parts, backup plans never hurt
 - Electric compressor failed
 - If in doubt- get it calibrated

- Simulant lessons learned
 - Define your specification in detail
 - Speak the same language: ensure characterization methods are exactly the same (WTP approved procedure)
 - Have technical experts who wrote the procedure walk through the procedure with the vendor
 - Simulant Shelf life: chemical and physical changes with storage
 - temperature sensitivity, biological growth, etc..—add biocide to clay
 - Allow time for kaolin/bentonite clay properties to stabilize

Lessons Learned

Large-Scale Testing for Effects of AFA on Gas Retention/Release

- Simulant lessons learned (cont'd)
 - Scaling issues, producing large batches require centrifuge rather than settling
 - Expect variability between batches
 - Mix several batches on site to produce uniform simulant
 - Mix/dilute simulant in totes prior to transferring into test vessel
 - Adjust rheology in totes before loading simulant into tank

- Testing
 - Rheology adjustment
 - use same dilution curve
 - Don't start shift work before test stand is 100% complete
 - ½ hour shift overlap is adequate, 1 hour during 1st week
 - Lead Test Engineers, think/plan 3 to 4 hours ahead

- Data Analysis
 - Plan early
 - Staffing
 - Two or more is [©]/prudent
 - Independent of shift-work- don't mix

's and

Stay current on analysis and reviews

- Staffing Resources and Communication
 - While convenient to multi-task, don't underestimate big tasks
 - Have a dedicated crafts support team
 - Cross-training test crew members was elpful
 - Communication is key
 - Documentation---have it in writing!
 - Sharepoint site and Test phone line for latest information

Summary

- Procurements, simulant-related issues, testing tips, data analysis, staff resources and communication
 - Plan ahead, order parts early, get items calibrated
 - Test procedures should be specific, allow time for simulant to stabilize, expect batch variances
 - Cross-train staff members, lead test engineers plan ahead
 - Designate independent staff, keep up with analysis and reviews
 - Communicate frequently with staff, email, sharepoint and test phone line were efficient